vendredi, mai 18, 2007

Comment une chose aussi simple et belle n'avait pas été vue avant ?


Mystère !

Pourtant nous ne disons rien de nouveau dans ce Blog.

L'oeuf cosmogonique de Panès est un Zéro générateur de .... Et cela a plus de Trois mille ans d'existence.

Une bonne partie de la philosophie antique reposait sur une inversion entre la vie ici bas qui était une forme de mort et la vie de l'âme débarrassée du corps, seule forme de vie pour bon nombre de philosophes comme Pindare par exemple. Non, assurément, il n'est jamais rien de totalement nouveau sous le soleil. Seule les formulations changent.
Et si diviser par zéro n'était pas un simple problème mathématique ?

lundi, mai 14, 2007

Ivano Ghirardini: "La division par zéro c'est très pratique!"


Mais attention, ne vous en servez pas pour déboguer un plantage au cas ou vous auriez posé ce type de division dans un programme.

EN VIE , LA DIVISION PAR ZERO N'A PAS DE SOLUTION OU DE DEFINITION DANS L'ENSEMBLE SUR LEQUEL VOUS TRAVAILLEZ !

Il s'agit d'autre chose qu'il faut programmer pour le faire fonctionner en créant un executable par exemple.

EN NON VIE, LA DIVISION PAR ZERO VOUS PERMET DE RECONSTITUER UN ENSEMBLE IDENTIQUE A CELUI SUR LEQUEL VOUS AVEZ EFFECTUE LA DIVISION QUI N'A D'AUTRE CONNEXION AVEC L'ENSEMBLE EN VIE DE DEPART QUE LE ZERO DE CET ENSEMBLE.


mercredi, mai 09, 2007

Ivano Ghirardini le Gurû de la Division par Zéro en fait don au Domaine Public le 8 janvier 2000

Le cachet de la poste faisant foi est du 10 janvier 2000 en poste de Chamonix Mont Blanc.
Tout n'est pas formellement explicité dans cette simple lettre: Vie, Non Vie, cardinaux Doubles, 5e dimension de la physique, Big Bang, ... Mais le principe général y est décrit.

Codex de la Division par Zéro page 1

Codex de la Division par Zéro page 2

Le Codex de la Division par Zéro Page 3

Le Codex de la division par Zéro page 4

Codex de la division par zéro : les antériorités !

Mr ÏVANO GHIRARDINI Guide de Haute Montagne BP 10 Les Praz 74400 CHAMONIX

CODEX DE LA DIVISION PAR ZERO

"Rien ne se perd, rien ne se crée, tout se transforme' Lavoisier.

Si le résultat de la multiplication par Zéro d*un nombre quelconque est zéro, ce nombre ayant été absorbé par le zéro, sans affecter sa nature d'ensemble vide, la division par zéro a un spectaculaire effet inverse, elle restitue tous les nombres absorbés par multiplication. Si le Zéro est absorbant par la multiplication, il est matriciel, générateur de, ou reconstitutif de l'ensemble dans lequel il se trouve. Les conséquences sont gigantesques. Car le Zéro devient non seulement matriciel des ensembles dans lequel il se trouve mais aussi des systèmes de références. Nos découvertes portent sur les Cardinaux doubles, les structures P Adiques par division par zéro sur des champs de Galois, les Ensembles Efficaces, ....

Notre 1ère découverte de la division restreinte par zéro dans GF2 puis dans R est du 18 décembre 1999. ( Lettre avec AR au juge commissaire du TGÏ de Bonneville du 21 décembre 1999, Post Eclair du 8 janvier 2000, ÏNPI) . La revue Pour la science de Février-Mai 2000 parle de non définition de la division par zéro. Notre découverte, par hasard, en travaillant sur des champs de Galois, se doit d'être du domaine public, ainsi que toutes ses conséquences , y compris en physique.

Il a été édité 12 exemplaires originaux de ce Codex (antidatés du 1er MAI 2000; rédigés rapidement dans la nuit du 17 au 18 et postés le 18 Mai 2000 juste avant d'aller de nouveau en prison).

Dépot d'antériorité Au TGI de Bonneville du 21/12/1999

Monsieur le juge,

L'aboutissement de cette longue liquidation, d'une entreprise d'abord, puis par extension au gérant semble conduire là ou je pensais depuis le début : recouvrer la mémoire d'une expérience de non vie.

Et ce n'est ni incohérent ni étrange, ni un jeu comme le pense le Président du Tribunal de Commerce qui est à l'origine de toutes ces décisions pour me liquider. Ce que je découvre est vraiment incroyable.

Incroyable le fait que la division par zéro de façon restreinte à R l'ensemble des réel donne justement R en totalité et ce quelque soit n, le réel divisé par Zéro. Cette division se pose ainsi :


n/oR génère un ensemble R' identique à R mais en Non Vie par rapport à R

Incroyable le fait qu'il soit possible de généraliser cela à tous les ensembles numériques. Mais cela reste à vérifier.

Cette résolution de la division par zéro passe par la création d'un nouveau

concept de nombres, les nombres en Non vie ou les nombres en absence et en

mémoire que je représente par le symbole génère .

Comme il sagit d'une théorie mathématique à Tétât pur qui peut amener bien

des changements en physique surtout, je ne sais pas comment faire pour protéger

mes droits. Aussi, j'ai fragmenté, presse pour antériorité de la date, Drire pour

vérification et demande d'information, résultat sans la démonstration au TG1 de

Bonneville. Seul un prof de math de Chamonix a été mis au courant.

Si ma théorie est juste, toutes les calculettes sont fausses lorsqu'elles envoient

un message d'erreur, il suffit de taper R, cela semble peu de chose mais il

semblerait que ce soit une vrai révolution mathématique.

La théorie complète et la démonstration de la preuve sont à disposition pour

vérification des travaux et juger de leur intérêt ou non.

Avec mes meilleurs vœux pour L'an 2000 et mes plus respectueuses salutations

La formulation du Big Bang est une merveille: 0U / 0U génère U'

Le Zero est la Cinquième dimension de la Physique, Il permet de résoudre le problème du Champ Unifié !


Le Zéro a un cardinal double:

En VIE et en quantitatif il est bien vide dans l'Ensemble dont il est le cardinal de l'ensemble vide.
En NON VIE et donc en informatif c'est une ensemble plein identique à l'Ensemble dont il contient la mémoire des éléments et toutes les informations concernant les évènements qui se sont produites en Vie dans cet Ensemble.

Il constitue donc une 5e Dimension, purement informative et d'une très grande complexité. Il peut restituer en VIE tous les éléments dont il garde la mémoire en NON VIE par division de ce zéro par lui même.

Lettre à Maitre Henri Bernard sur l'antériorité de Galois

Evariste Galois le précurseur dans des lignes de calculs non comprises !

pour n= 0

[1,0] = 1/0 = 0/0+0[0,0]

Evariste Galois avait bien suivit la piste conduisant à la division par zéro

[1,n] = 1/n = 0/0+n[0,n]

lettre à Maitre Henri Bernard suite des antériorités d'Evariste Galois

Lettre a Maitre Henri Bernard !

Dépot antériorité (extrait) 21/12/1999

Monsieur le juge,

L'aboutissement de cette longue liquidation, d'une entreprise d'abord, puis par extension au gérant semble conduire là ou je pensais depuis le début : recouvrer la mémoire d'une expérience de non vie.

Et ce n'est ni incohérent ni étrange, ni un jeu comme le pense le Président du Tribunal de Commerce qui est à l'origine de toutes ces décisions pour me liquider. Ce que je découvre est vraiment incroyable.

Incroyable le fait que la division par zéro de façon restreinte à R l'ensemble des réel donne justement R' en totalité et ce quelque soit n, le réel divisé par Zéro.

Juge commissaire

Mr Tvano Ghirardini

Bp 10 les Praz

74400 CHAMON1X Chamonïx ie 11 mars 2000

A l'attention de Monsieur le JUGE COMMISSAIRE TGIdeBonneville 74 BONNEVILLE

OBJET: Dépôt d'antériorité de découverte sur quelques unes des conséquences de la division par Zéro.

Monsieur le Juge Commissaire;

Comme ces découvertes découlent de cette liquidation et qu'elles n'auraient pas eu lieu sans elle; je me borne à vous en énumerer quelques unes. Tout cela est et doit être du Domaine Public:

EN MATHEMATIQUES:

Nouveaux systèmes de référence. Découverte du caractère matriciel du Zéro; de sa Non Unicité. Découverte des cardinaux doubles. Découverte des nombres en Non Vie et de leurs propriétés. Structures P-Adiques obtenues par division par zéro sur des champs de Galoïs. Structure des Ensembles Efficaces obtenue à partir de Champs Premiers et des Champs deGalois. .../... EN PHYSIQUE:

Nouveaux Systèmes de référence à partir des Zéros matriciels. La reformulation du principe de Relativité Générale qui est incomplet. Et Oui; 11 manquait bien quelque chose; LA CINQUIEME DIMENSION; celle du Zéro et ce qu'il cache dans tous les systèmes de référence exprimés en coordonnées de Gauss. La premier modèle mathématique d'explication du Big Bang;.,../..,.

L'existence probable d'une mécanique de Non vie aux propriétés plus

qu'étonnantes.

Voilà; je n'ai rien noté. Je me borne à communiquer des résultats sans les

démonstrations. Mais elles existent dès à présent et peu importe la forme

sous laquelle elles sont conservées.

Avec mes plus respectueuses salutations.

Dépot Drire

Mr IVANO GHIRARD1NT BP 10 LES PRAZ 744OO CHAMONTX

Chamonix le 21 DECEMBRE 1999

A Monsieur le Directeur. DRIRE

74000 ANNECY

Monsieur le Directeur,

Nous venons de faire une découverte en mathématiques qui permet de résoudre la division d'un nombre réel par Zéro. Tous les ordinateurs, calculettes, livres de maths parlent d'erreur ou d'impossibilité.

Pour cela, j'ai du inventer un nouveau concept de nombre, les nombres en Non vie ou nombres en absence et en mémoire qui ont des propriétés étonnantes. A partir de là, l'usage des mathématiques de Cantor permet de donner un résultat vraiment extraordinaire et de toute beauté. Une vrai merveille mathématique.

Je voudrais faire vérifier ma théorie. A qui dois je m'adresser ? Quel est l'organisme le plus approprié car le résultat est vraiment extraordinaire et il conduit à des applications en physique .

Comment protéger la propriété intellectuelle de cette découverte ? Comment sont régies les découvertes en matière de mathématiques ou de physique théorique ?

Je vous signale que j'ai pris la peine d'annoncer par communiqué de presse, récépissés de fax à l'appui l'antériorité de la date de découverte qui remonte au 18 décembre 1999.

Le résultat que je prétere ne pas divulguer pour l'instant est très concret. Les modifications a apporter sur les calculettes et ordinateurs, peu coûteuses, pour le faire apparaître à la place du message d'erreur habituel. Le marché est d'entrée planétaire. Puis je demander des droits si l'exactitude de ma découverte se confirme.

Les développements de cette théorie semblent immenses, surtout en physique. Mais avant cela, il faut vérifier la validité des concepts. -

Je vous présente mes meilleurs vœux pour Tan 2OOO et vous assure de mes plus dévoués salutations.


Dépots d'antériorité de découvertes

Don au Domaine Public !

L'état des connaissances le 8 mai 2007 avant publication de nos théorèmes.

0 (nombre)

Un article de Wikipédia, l'encyclopédie libre.

(Redirigé depuis Zéro)
Pour les articles homonymes, voir Zéro (homonymie).

0
Cardinal Zéro
Ordinal zéroième
zérotième
0e
Préfixe grec Οὐδέν
Préfixe latin nihil
Adverbe
Adverbe d'origine
latine

Propriétés
Facteurs premiers Aucune
Diviseurs Tous les entiers
Autres numérations
Numération romaine (inexistant)
Système binaire 0
Système octal 0
Système duodécimal 0
Système hexadécimal 0

0 (zéro) est l'entier naturel précédant 1.

C'est un chiffre désignant la valeur nulle ou le cardinal (nombre d'éléments) de l'ensemble vide.

Sommaire

[masquer]

Histoire [modifier]

Il est apparu trois fois dans l’histoire des systèmes de numération élaborés par différents peuples et civilisations. La première apparition du zéro semble remonter au IIIe siècle av. J.-C. à Babylone, il n'était cependant pas utilisé dans les calculs et ne servait que comme chiffre (marquage d'une position vide dans le système de numération babylonienne). Il a été ensuite redécouvert aussi par les Chinois, qui n’ont pas su en revanche introduire le zéro. Les inscriptions sur os et écailles (jiaguwen) découvertes dans la région de Anyang, dans l'actuelle province du Henan, à la fin du XIXe siècle, nous apprennent que, dès les XIVe - XIe siècles av. J.-C., les Chinois utilisaient une numération décimale de type « hybride », combinant dix signes fixes pour les unités de 1 à 9, avec des marqueurs de position particuliers pour les dizaines, centaines, milliers et myriades.

Il est également utilisé par les Mayas durant le Ier millénaire, mais de même uniquement comme chiffre dans leur système de numération de position et non comme nombre. (voir numération maya)

Son usage moderne, à la fois comme chiffre et comme nombre, est héritée de l'invention indienne des chiffres nagari vers le Ve siècle. Le mot indien désignant le zéro était śūnya (çûnya), qui signifie « vide » « espace » ou « vacant ». Le mathématicien et astronome indien Brahmagupta est le premier à définir le zéro dans son ouvrage Brâhma Siddhânta. Ce mot, traduit de l'arabe en « ṣifr » (Sifr صِفْر), ce qui signifie « vide » et « grain », est la racine des mots chiffre et zéro (vient de ce que Fibonacci a traduit l'arabe Sifr par l'italien zephirus, à partir duquel il a formé zevero qui est devenu zero). La graphie du zéro, d'abord un cercle, est inspirée de la représentation de la voûte céleste.

Comme l'indique l'étymologie, son introduction en Occident est consécutive à la traduction des travaux des mathématiciens musulmans, notamment ceux d'al-Khwārizmī, vers le VIIIe siècle. Les chiffres arabes sont importés d'Espagne en Europe chrétienne aux environs de l'an mil par Gerbert d'Aurillac, devenu le pape Sylvestre II. Le zéro ne se généralise pas pour autant dans la vie courante, les chiffres dits arabes servant surtout... à marquer les jetons d'abaque de 1 à 9 !

Ce n'est qu'avec le retour du commerce intensif consécutif aux Croisades que les Européens généralisent, au XIIe siècle, l'usage du zéro. Une curiosité pour les œuvres des auteurs grecs et musulmans prend en même temps naissance.

Léonard de Pise, dit Fibonacci, a une influence déterminante. Il reste plusieurs années en Afrique du Nord et étudie auprès d'un professeur local. Il voyage également en Grèce, Égypte, Proche-Orient et confirme l'avis de Sylvestre II sur les avantages de la numération de position. En 1202, il publie le Liber Abaci, recueil qui rassemble pratiquement toutes les connaissances mathématiques de l'époque, et malgré son nom, apprend à calculer sans abaque.

C'est au début du XXe siècle que zéro sera pleinement considéré comme un nombre à part entière et non comme un simple chiffre. L'égalité x0=1 (pour x ni nul, ni infini) s'écrira dès lors de plein droit.

Graphies actuelles [modifier]

La graphie « 0 » n'est pas la seule utilisée dans le monde ; un certain nombre d'alphabets — particulièrement ceux des langues du sous-continent indien et du sud-est asiatique — utilisent des graphies différentes.

Alphabet Chiffre Alphabet Chiffre Alphabet Chiffre Alphabet Chiffre
Amharique
Arabe
Bengalî
Birman
Devanāgarī
Gujarati
Gurmukhî
Kannara
Khmer
Latin
0
Malayalam
Oriya
Tamoul
Télougou
Thaï
Tibétain

Utilisations [modifier]

Il est aujourd'hui à la base de notre système de mesure de la température :

  • 0 °C : température du passage de l'eau de l'état solide (glace) à l'état liquide, à une pression ambiante de 1013 hPa ;
  • 0 K : zéro absolu, température la plus basse possible (-273,16 °C), pour laquelle l'énergie rovibrationnelle et cinétique des molécules est nulle.

Il n'y a pas d'année zéro dans le calendrier grégorien. En effet, l'usage du nombre 0 en Europe est postérieur à la création de l'anno Domini par Dionysius Exiguus au VIe siècle. Cependant pour simplifier les calculs d'éphémérides, les astronomes définissent une année 0 qui correspond à l'année -1 des historiens, l'an -1 des astronomes correspondant à l'an -2 des historiens et ainsi de suite...

C'est ainsi que le IIIe millénaire et le XXIe siècle ont commencé le 1er janvier 2001.

Minuit peut se noter 00:00.

Les informaticiens ont l'habitude de compter à partir de 0 et non de 1. La raison en est que la numérotation d'éléments stockés de façon continue dans une zone de stockage (disque, mémoire, etc) se fait par décalage par rapport à une adresse de début : le premier élément est celui au début de la zone (+ 0), le second élément est le suivant (+ 1), etc. Ce double standard des numérations à partir de 0 et de 1 (chaque système ayant ses avantages et inconvénients) est la source de nombreuses erreurs de programmation.

Le zéro comme notation des bases 2, 8, 10, 16... [modifier]

Dans la base dix que l'on utilise, le chiffre le plus à droite indique les unités, le deuxième chiffre indique les dizaines, le troisième les centaines, le quatrième les milliers...

Le zéro joue donc un rôle particulier dans le système arithmétique positionnel, quel qu'il soit du reste.

Rappelons que l'usage de la base 10, en provenance de l'Inde, s'est imposé par rapport à d'autres bases, comme par exemple 12 et 60 qui étaient utilisées dans certaines civilisations.

Lorsqu'il y a des unités résiduelles, par exemple dans trente-deux (32), le chiffre des unités (2) permet de comprendre que l'autre chiffre (3) indique les dizaines.

Si l'on a un nombre entier de dizaines (par exemple trois dizaines, trente), il n'y a pas d'unité résiduelle. Il faut donc un caractère qui permette de marquer que le 3 correspond aux dizaines, et ce caractère est le 0 ; c'est ainsi que l'on comprend que « 30 » signifie « trois dizaines ».

On aurait pu utiliser n'importe quel autre caractère, par exemple un point ; ainsi, deux-cent trois se noterait « 2.3 ».

L'utilisation d'un caractère « bouche-trou » remonte à la numération babylonienne, comme indiqué ci-dessus, mais il ne s'agit pas du concept d'« absence de quantité », il s'agit juste d'une commodité de notation. Dans la numération romaine, cet artifice n'est pas utile puisque les unités (I, V), les dizaines (X, L), les centaines (C, D) et les milliers (M) sont notés avec des caractères différents. En contrepartie, la notation de nombres supérieurs à 8999 devient problématique et les reconnaissances de structures pour le calcul mental rapide bien plus pénibles (l'année de sortie d'un film est affichée en chiffres romains dans le générique précisément pour cette raison !).

Il pourrait être bon de rappeler que les Mayas utilisèrent aussi un autre zéro, spécialisé pour la notation du premier jour d'un mois de l'année solaire (le ha'ab de 365 jours). Chez eux, le premier janvier était un « 0 Pop ».

Le zéro comme absence de quantité [modifier]

Le fait d'exprimer l'absence de quantité par un nombre n'est pas une évidence en soi. L'absence d'un objet s'exprime par la phrase « il n'y en a pas » (ou « plus »).

Les nombres sont déjà une abstraction : on ne s'intéresse pas à la qualité d'un objet, mais juste à sa quantité, la dénombrabilité (le fait que des objets soient similaires mais distincts). Avec le zéro, on va jusqu'à nier la quantité.

Lorsque l'on additionne ou multiplie deux nombres, on a derrière l'image de regrouper deux tas d'objets semblables, deux troupeaux. Cette image ne tient plus lorsque l'on manipule le zéro.

L'invention du zéro a permis l'invention des nombres négatifs.

Propriétés arithmétiques et algébriques [modifier]

Pour tout nombre réel (ou complexe) a :

  • a + 0 = 0 + a = a\, (0 est élément neutre pour l'addition)
  • a \times 0 = 0 \times a = 0\, (0 est élément absorbant pour la multiplication)
  • si a \ne 0\, alors a^0 = 1\,
  • 0^0\, n'est pas défini (c'est une forme indéterminée du calcul des limites), mais il est souvent « pratique », dans certains cadres formels, de considérer que 0^0 = 1\, .
  • par extension de la factorielle à l'aide de la fonction Gamma, 0 ! = 1\,
  • a + (- a) = 0\,
  • {a \over 0} = non défini (voir article division par zéro)
  • {0 \over 0} = non défini, en remarquant toutefois que le calcul dx \over dy lorsque les deux valeurs tendent vers zéro, est la base du calcul différentiel.

Usage étendu de zéro en mathématiques [modifier]

Voir aussi [modifier]

wikt:

Le Wiktionnaire possède une entrée pour « zéro ».

Articles connexes [modifier]

Liens externes [modifier]

Bibliographie [modifier]

  • Histoire universelle des chiffres, l'intelligence des hommes racontée par les nombres et le calcul. Georges Ifrah. Rober Laffont, collection Bouquins. ISBN 2221901002. Tome 1, 1042 pages, tome 2, 1010 pages. Janvier 1994. (illustrations en couleur)
  • Zéro, la biographie d'une idée dangereuse, Charles Seife, éd. Hachette, ISBN 2012791921


Liste des nombres
0 · 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 ·
0 · 10 · 20 · 30 · 40 · 50 · 60 · 70 · 80 · 90 ·
0 · 100 · 200 · 300 · 400 · 500 · 600 · 700 · 800 · 900 ·

mercredi, mai 02, 2007

La Division par zéro est une opération ensembliste

Elle ressemble au complémentaire de l'ensemble vide d'un ensemble dans un ensemble avec unrésultat identique, l'ensemble luimême en totalité mais en NON VIE par rapport à l'ensemble ou à été effectué la division.
Comprez cela à l'ouverture d'une nouvelle fenetre identique pour comprendre.

Le complémentaire de l'ensemble vide de E dans E c'est E